學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
GROW: Using Artificial Intelligence to Screen Human Intelligence
內容大綱
Over 10% of all 2017 university graduates in Japan used GROW, an artificial intelligence platform and mobile app developed by Tokyo-based people analytics startup IGS, to recruit for a job. This case puts participants in the shoes of IGS founder and CEO Masahiro Fukuhara, a first-time entrepreneur, as he considers the varied ways the "big data" he is collecting is being used--and whether some uses promised more meaningful (or less potentially misleading) impact than others. After briefly introducing IGS, Fukuhara, and GROW, the case outlines exactly how GROW works, starting with a mobile app to assess competencies and personalities of candidates and ending with artificial intelligence (machine learning) to produce high-quality recommendations to companies about whom they should hire. The case then articulates precisely how three companies--airline ANA (All-Nippon Airways), global conglomerate Mitsubishi Corporation, and advertising/media company Septeni--use GROW in very different ways to manage talent recruiting, screening, hiring, placement, and development. The case asks students to consider two questions: (1) Which of the three company's approach to using people analytics for talent acquisition and development is most appealing (or most concerning)?; and (2) Should Fukuhara turn on the most advanced part of the artificial intelligence engine, allowing GROW not just to provide recommendations to clients about whom they should hire, but also (based on performance and attribute data of previous hires) to overrule clients' specifications (or biases) about the competencies they should be targeting in their ideal hires?