學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
Assessing Prediction Accuracy of Machine Learning Models
內容大綱
The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools are then described: mean squared error (MSE), mean absolute deviation (MAD), Brier score, and cross-entropy, true/false positives/negatives, the confusion matrix, true positive rate (sensitivity or recall), false negative rate (Type II error rate), precision, true negative rate (specificity), false positive rate (Type I error rate), receiver operating characteristic curve (ROC) and area under the curve (AUC), and precision-recall curve.