學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
To Catch a Thief: Explainable AI in Insurance Fraud Detection
內容大綱
White lies (inflated claims) cost the insurance industry billions of dollars every year. After investing heavily to automate workflows (from policy subscription to claims processing), digitization has ironically made fraud easier to commit and harder to catch. To an industry drowning in data and paying out millions per day for fraudulent claims, artificial intelligence and machine learning offer new hope. The case introduces what it calls "explainable AI" seen through the eyes of a senior operations executive at Shift, an insurtech unicorn company whose algorithm is used by global insurers such as Generali France and Mitsui Sumitomo to fight fraudulent claims. The focus is on strategy making (following a private equity funding round) and algorithm-level decisions. With an anonymized dataset of more than 10,000 claims and a guided coding exercise in statistical computing softwares R and Python, students are able to backtest their strategies on historical data. Beyond the exercise there is ample material to drive case discussion. https://publishing.insead.edu/case/to-catch-a-thief