學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
What's Your Data Strategy?
內容大綱
Although the ability to manage torrents of data has become crucial to companies' success, most organizations remain badly behind the curve. More than 70% of employees have access to data they should not. Data breaches are common, rogue data sets propagate in silos, and companies' data technology often isn't up to the demands put on it. In this article the authors describe a framework for building a robust data strategy that can be applied across industries and levels of data maturity. The framework will help managers clarify the primary purpose of their data, whether "defensive" or "offensive." Data "" is about minimizing downside risk: ensuring compliance with regulations, using analytics to detect and limit fraud, and building systems to prevent theft. Data "offense" focuses on supporting business objectives such as increasing revenue, profitability, and customer satisfaction. Using this approach, managers can design their data-management activities to support their company's overall strategy.