學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
Artificial Intelligence for the Real World
內容大綱
Cognitive technologies are increasingly being used to solve business problems; indeed, many executives believe that AI will substantially transform their companies within three years. But many of the most ambitious AI projects encounter setbacks or fail. A survey of 250 executives familiar with their companies' use of cognitive technology and a study of 152 projects show that companies do better by taking an incremental rather than a transformative approach to developing and implementing AI, and by focusing on augmenting rather than replacing human capabilities. Broadly speaking, AI can support three important business needs: automating business processes (typically back-office administrative and financial activities), gaining insight through data analysis, and engaging with customers and employees. To get the most out of AI, firms must understand which technologies perform what types of tasks, create a prioritized portfolio of projects based on business needs, and develop plans to scale up across the company.