學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
Getting AI to Scale
內容大綱
Most companies are struggling to realize artificial intelligence's potential to completely transform the way they do business. The problem is, they typically apply AI in a long list of discrete uses, an approach that doesn't produce consequential change. Yet trying to overhaul the whole organization with AI all at once is simply too complicated to be practical. What's the solution? Using AI to reimagine one entire core business process, journey, or function end to end, say three McKinsey consultants. That allows each AI effort to build off the previous one by, say, reusing data or enhancing capabilities for a common set of stakeholders. An airline, for example, focused on its cargo function, and a telecom provider on its process for managing customer value. Scaling up AI involves four steps: (1) Identify an area where AI will make a big difference reasonably quickly and there are multiple interconnected activities and opportunities to share technology. (2) Staff the team with the right people and remove the obstacles to their success. (3) Reimagine business as usual, working back from a key goal and then exploring in detail how to achieve it. (4) Support new AI-based processes with organizational changes, such as interdisciplinary collaboration and agile mindsets.