學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
AI Regulation Is Coming
內容大綱
For years public concern about technological risk has focused on the misuse of personal data. But as firms embed more and more artificial intelligence in products and processes, attention is shifting to the potential for bad or biased decisions by algorithms--particularly the complex, evolving kind that diagnose cancers, drive cars, or approve loans. Inevitably, many governments will feel regulation is essential to protect consumers from that risk. This article explains the moves regulators are most likely to make and the three main challenges businesses need to consider as they adopt and integrate AI. The first is ensuring fairness. That requires evaluating the impact of AI outcomes on people's lives, whether decisions are mechanical or subjective, and how equitably the AI operates across varying markets. The second is transparency. Regulators are very likely to require firms to explain how the software makes decisions, but that often isn't easy to unwind. The third is figuring out how to manage algorithms that learn and adapt; while they may be more accurate, they also can evolve in a dangerous or discriminatory way. Though AI offers businesses great value, it also increases their strategic risk. Companies need to take an active role in writing the rulebook for algorithms.