學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
Where Data-Driven Decision-Making Can Go Wrong
內容大綱
When considering internal data or the results of a study, often business leaders either take the evidence presented as gospel or dismiss it altogether. Both approaches are misguided. What leaders need to do instead is conduct rigorous discussions that assess any findings and whether they apply to the situation in question. Such conversations should explore the internal validity of any analysis (whether it accurately answers the question) as well as its external validity (the extent to which results can be generalized from one context to another). To avoid missteps, you need to separate causation from correlation and control for confounding factors. You should examine the sample size and setting of the research and the period over which it was conducted. You must ensure that you're measuring an outcome that really matters instead of one that is simply easy to measure. And you need to look for-or undertake-other research that might confirm or contradict the evidence. By employing a systematic approach to the collection and interpretation of information, you can more effectively reap the benefits of the ever-increasing mountain of external and internal data and make better decisions.