學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
Retention Modeling at Scholastic Travel Company (A)
內容大綱
This case, along with its B case (UVA-QA-0865), is an effective vehicle for introducing students to the use of machine-learning techniques for classification. The specific context is predicting customer retention based on a wide range of customer attributes/features. The specific techniques could include (but are not limited to): regressions (linear and logistic), variable selection (forward/backward and stepwise), regularizations (e.g., LASSO), classification and regression trees (CART), random forests, graduate boosted trees (xgboost), neural networks, and support vector machines (SVM). The case is suitable for an advanced data analysis (data science, machine learning, and artificial intelligence) class at all levels: upper-level business undergraduate, MBA, EMBA, as well as specialized graduate or undergraduate programs in analytics (e.g., masters of science in business analytics [MSBA] and masters of management analytics [MMA]) and/or in management (e.g., masters of science in management [MScM] and masters in management [MiM, MM]). The teaching note for the case contains the pedagogy and the analyses, alongside the detailed explanations of the various techniques and their implementations in R (code provided in Exhibits and supplementary files). Python code, as well as the spreadsheet implementation in XLMiner, are available upon request.