學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
Text Analytics: Turning Words into Data
內容大綱
The searchable internet contains almost 2 billion websites. And new, text-rich sites are being added at a rapid pace: more than 700 million popped up from 2016 to 2017, according to the International Real Time Statistics Project. A lot of this web-based text is relevant to marketers: online product reviews, information about purchasing behavior, customer-to-customer interactions, and transcribed tele-sales calls. Marketers now have more information from consumers in the form of written words than ever before. The problem, as with any extremely large data set, is determining how best to use the information. The relatively new fields of text analytics and sentiment analysis offer marketers a solution, enabling them to turn vast amounts of emotion-rich, word-based data into actionable information about consumers. This note explores dictionary-based sentiment analysis using programming language R; it also introduces empirical sentiment analysis.