學門類別
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- A practical guide to SEC ï¬nancial reporting and disclosures for successful regulatory crowdfunding
- Quality shareholders versus transient investors: The alarming case of product recalls
- The Health Equity Accelerator at Boston Medical Center
- Monosha Biotech: Growth Challenges of a Social Enterprise Brand
- Assessing the Value of Unifying and De-duplicating Customer Data, Spreadsheet Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise, Data Supplement
- Building an AI First Snack Company: A Hands-on Generative AI Exercise
- Board Director Dilemmas: The Tradeoffs of Board Selection
- Barbie: Reviving a Cultural Icon at Mattel (Abridged)
- Happiness Capital: A Hundred-Year-Old Family Business's Quest to Create Happiness
RBC: Social Network Analysis
內容大綱
In October 2013, the Royal Bank of Canada (RBC), Canada's largest bank, hired a new head of Enterprise Fraud Strategy, a department tasked with protecting RBC's global customers from fraud. The department head's immediate priority was to prevent fraudulent transactions by RBC's own customers-a phenomenon called first-party fraud-by implementing a bourgeoning technology called social network analysis (SNA). The technology used predictive analytics and big data to forecast the occurrence of first-party fraud. The head of Enterprise Fraud Strategy had three primary questions: First, how should SNA be used to bring down the ratio of fraud alerts to actual fraud at RBC? Second, how should the cost of maintaining SNA protocols be reduced? Finally, how should the issues around systemic performance of SNA be resolved?