學門類別
政大
哈佛
- General Management
- Marketing
- Entrepreneurship
- International Business
- Accounting
- Finance
- Operations Management
- Strategy
- Human Resource Management
- Social Enterprise
- Business Ethics
- Organizational Behavior
- Information Technology
- Negotiation
- Business & Government Relations
- Service Management
- Sales
- Economics
- Teaching & the Case Method
最新個案
- Leadership Imperatives in an AI World
- Vodafone Idea Merger - Unpacking IS Integration Strategies
- Predicting the Future Impacts of AI: McLuhan’s Tetrad Framework
- Snapchat’s Dilemma: Growth or Financial Sustainability
- V21 Landmarks Pvt. Ltd: Scaling Newer Heights in Real Estate Entrepreneurship
- Did I Just Cross the Line and Harass a Colleague?
- Winsol: An Opportunity For Solar Expansion
- Porsche Drive (B): Vehicle Subscription Strategy
- Porsche Drive (A) and (B): Student Spreadsheet
- TNT Assignment: Financial Ratio Code Cracker
-
Assessing Prediction Accuracy of Machine Learning Models
The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools are then described: mean squared error (MSE), mean absolute deviation (MAD), Brier score, and cross-entropy, true/false positives/negatives, the confusion matrix, true positive rate (sensitivity or recall), false negative rate (Type II error rate), precision, true negative rate (specificity), false positive rate (Type I error rate), receiver operating characteristic curve (ROC) and area under the curve (AUC), and precision-recall curve.